Gastro-intestinal hormones
Coordination of gastro-intestinal function

Other non-endocrine gland sites of hormone production

Functions
G-I hormones, with the enteric & autonomic nervous systems.
integrate and coordinate mechanisms which
• move
• digest
• absorb

They control
• exocrine & endocrine secretion
• motility, growth, & blood flow
• appetite

Routes
• endocrine
• paracrine
• neurocrine (from nerves of the enteric nervous system)

Difficulty in determining physiologically active concentration of hormone.
Use of neutralising antibodies to elucidate physiology.
Gut (entero-) endocrine cells

Part of G-I tract epithelium
- Originally seen as 'pale cells'
- Derived from endoderm
- Variably positioned in crypts
- Hormone secreted basally
- Most have microvilli on apex open to gut lumen to sense the content of the gut
- Distribution varies between fetus & adult.

Gastrin – G cells

Gastrin (G17) plasma: pmol/l; increased after meal; G17 t½=5 min; (G34 t½=40 min has only 20% potency of G17)

Release
- stimulated by:
 - protein digestion products (esp tryptophan, phenylalanine)
 - (also calcium, beer, wine, coffee)
 - vagus, via acetylcholine, GRP
- distension of stomach
- hypercalcaemia – PTH × secretion

Inhibited by:
- stomach pH<2.5
 - (alkali short term has little effect; long term causes hyperplasia)
- somatostatin
 - (local negative feedback)
GASTRIN - EFFECTS

Gastrin stimulates (via G_{aq} Ca, PKC):
- gastric acid secretion (direct & indirect via histamine H$_2$)
- parietal cell growth
- pepsinogen secretion
- antral motility (churning)
- mucosal blood flow
- trophic to parts of GI tract
- water & electrolyte secretion in liver, pancreas, intestine

High levels:
- stimulate calcitonin,
- food intake,
- insulin & pancreatic enzyme secretion,
- antagonise secretin

Effects synergise with those of vagal acetylcholine (M3; G_{aq} Ca, PKC)

GASTRIN PATHOLOGY

Gastrinoma (usually in pancreas) causes repeated peptic ulceration due to high acid and pepsin secretion (Zollinger-Ellison syndrome)

Role in non-gastrinoma duodenal ulceration

NR Most peptic ulceration now attributed to H. pylori

Duodenal ulcer patients secrete (on average) more acid than controls; but there is overlap of the data

Duodenal ulcer patients secrete more gastrin in response to a meal

HISTAMINE

- Enterochromaffin-like (ECL) cells of stomach wall.

- **Synthesis:** from histidine by histidine decarboxylase

- **Release:**
 - *vagal stimulation*
 - *gastrin*

- **Actions:**
 - stimulates gastric acid (HCl) secretion via H$_2$ receptors

- **Pharmacology:**
 - use of H$_2$ receptor antagonists for treatment of peptic ulceration (cimetidine, ranitidine)
 - (now superceded by proton pump inhibitors; omeprazole)

SECRETIN (first hormone described)

Distribution: S cells, from duodenum to distal ileum; in neck region of intestinal glands

-Synthesis: peptide.
- Plasma: pmol/l after meals; $t_{0.5}$=3 min

- **Release:** stimulated by acid in proximal duodenal - lumen pH<4.5; inhibited by somatostatin

- **Actions** (via G_s, CFTR, and Cl-HCO$_3$ exchange):
 - stimulates pancreatic secretion of HCO$_3$ & water; this washes pancreatic enzymes into the gut
 - stimulates liver secretion of HCO$_3$ & water into bile

(potentiates CCK)
CHOLECYSTOKININ (CCK) = Pancreozymin

Distribution: I cells in duodenum, jejunum

Forms: CCK33, CCK58, CCK39;
in brain CCK8

Terminal pentapeptide = terminal of gastrin

Release stimulated by: protein, fat digestion products in duodenum

Actions:
- stimulates secretion of pancreatic enzymes
- stimulates contraction of gall bladder
- potentiates action of secretin

(inhibits gastric emptying; increases small bowel transit)

(high levels potentiate secretion of calcitonin)

CCK acts on vagal afferent terminals to signal satiety (suppress appetite)

(the feeling that one has had enough to eat)

GLUCAGON-LIKE PEPTIDES (GLP-1 & GIP) (facilitation of insulin secretion)

GLP-1 Glucagon-Like Peptide

Distribution: L cells in small intestine

Release:
- stimulated by meals: especially oral carbohydrate and fat;
- also by GIP

Actions:
- powerfully potentiates glucose-stimulated insulin release

GIP Glucose-dependent Insulinotropic Peptide

(originally gastric inhibitory peptide: weak action) (peptide of secretin/glucagon family)

Distribution: K cells of small intestine

Release:
- stimulated by oral glucose, fat, protein

Actions:
- potentiates glucose-stimulated insulin release

SOMATOSTATIN

Local inhibition/negative feedback

Distribution: D cells gastric antrum to colon

Structure:
- peptide (14aa; 28aa in brain)
- acts via G_i to inhibit cAMP production

Release:
- stimulated by meals: amino acids, glucose, fatty acids, gastrin, secretin

Actions:
- suppresses secretion of GI hormones
- suppresses their effects (acid etc)
- retards absorption glucose; protects against post-prandial hyperglycaemia (in liver)

Pathology:
- somatostatinoma: - what would it cause?

VASOACTIVE INTESTINAL POLYPEPTIDE (VIP)

Distribution:
- in enteric neurons
- in pelvic parasympathetic nerves (NO; erection)
- in brain
- in nerves in pancreas

Structure:
- small peptide; secretin/glucagon family
- acts via cAMP (cf choler toxin)

Release:
- ? circulating levels don't rise after meal

Actions:
- relaxes cardiac sphincter, stomach, anal sphincter; vasodilator
- pancreatic bicarbonate secretion

Pathology:
- Tumour - VIPoma (Verner-Morrison syndrome):
 - watery diarrhoea; hypokalaemia; achlorhydria
Motilin
Distribution: endocrine cells antrum to colon
Structure: small peptide
Actions:
- increases the motility of the bowel
- induces migrating myoelectric complexes at antro-duodenal pacemaker

Neurotensin
Distribution: N cells of distal small intestine
Structure: small peptide
Release: intraluminal fat
Actions:
- + pancreatic secretion; - gastric/ small bowel motility; trophic to gut mucosa; protects gastric mucosa

Gut glucagon (enteroglucagon, glicentin)
Distribution: gastric A cells; ileal, colonic L cells
Structure: large glucagon-like; Mₙs 10,000; 4,000
Actions:
- stimulates gastric/intestinal motility
- stimulates intestinal absorption sugars
- systemic glucagon-like effects
- trophic - small bowel (compens. hypertrophy)

Multiple endocrine neoplasia (MEN)
Due to genetic mutations
Tumours are usually multiple

MEN 1: tumours of
- pancreas (gastrinoma, insulinoma, VIPoma);
- anterior pituitary;
- parathyroids (PTH)

MEN 2: tumours of
- thyroid C cells (calcitonin);
- adrenal medulla chromaffin cells (adrenaline)
- parathyroids (PTH)

GUT HORMONES INFLUENCING APPETITE & FEEDING (1)

CCK
- acts on vagal terminals; inhibits feeding

GHRELIN
- Peptide produced in stomach, oxyntic cells before meals and esp. in starvation
- Acts in hypothalamus to stimulate feeding
- When injected into mice increases fat mass
- Increased after dieting weight loss
- Very high in Prader-Willi obesity

GUT HORMONES INFLUENCING APPETITE & FEEDING (2)

PEPTIDE YY (PYY)
- produced in ileum and colon after meals
- has a prolonged effect on Y2 receptors in hypothalamus to decrease appetite and food intake
- has been controversial

Dual X-ray absorption scan showing body fat (white)

Control Ghrelin analogue

Other sites of hormone production

Adipose tissue (white fat)

Leptin
- plasma levels reflect total white fat mass;
- inhibits feeding by action in hypothalamus;
- also inhibits insulin secretion

Adiponectin
- increases insulin sensitivity in muscle and liver;
- decreased plasma adiponectin is associated with the 'metabolic syndrome' of increased BMI, insulin resistance and plasma lipid disturbance

Heart

Atrial natriuretic peptide (ANP)
- Production: peptide secreted by atrial myocytes
- Release: atrial dilatation (i.e. increased venous return, right heart failure)
- Actions: stimulates loss of sodium (water) in urine
- inhibits renin-angiotensin-aldosterone system
- reduces BP (- venous return, - cardiac output)

Kidneys

Erythropoietin
- Production: glycoprotein produced by glomeruli
- Release: reduced O_2 saturation of blood;
- androgens, beta-adrenergic
- Actions: + production of RBC (Abuse by athletes)

Renin-Angiotensin System

- Renin - protease from afferent arterioles of glomeruli
- Release: stimulated by sodium depletion, hypotension, dehydration, low renal artery blood flow, sympathetic NS.

Angiotensinogen - angiotensin I → angiotensin II
- All stimulates aldosterone secretion, thirst, vasoconstriction.
- Pharmacology: ACE inhibitors in treatment of hypertension

Prostanoids – prostaglandins, thromboxanes, leukotrienes etc
- produced by most tissues
- have local & endocrine actions – e.g. contraction of uterus; ductus art.

Gonadal, placental hormones – see Reproduction lectures

Cytokines, other Growth Factors – Pathology (immune) Y2

Year 2 Integrative Physiology – revisit many control systems

Clinical medicine – endocrine disturbance, primary or secondary

Hormones are just one class of chemical signals
- Nature/evolution has utilised every possibility
- Distinction hormones, neurotransmitters, local factors is blurred